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Abstract

Subspace identification for closed loop systems has been recently studied by several authors. A class of new and consistent
closed-loop subspace algorithms is based on identification of a predictor model, in a way similar as prediction error methods
(PEM) do. Experimental evidence suggests that these methods have a behavior which is very close to PEM in certain examples.
The asymptotical statistical properties of one of these methods have been studied recently allowing to show (i) its relation
with CCA and (ii) that Cramér Rao lower bound is not reached in general. Very little however is known concerning their
relative performance.

In this paper we shall discuss the link between these “predictor based” methods; to this purpose we exploit the role which
Vector AutoRegressive with eXogenous inputs models play in all these algorithms. The results of this paper provide a unifying
framework under which all these algorithms can be viewed; also the link with VARX modeling have important implications
as to computational complexity is concerned, leading to very computationally attractive implementations.

We also hope that this framework, and in particular the relation with VARX modeling followed by model reduction will turn
out to be useful in future developments of subspace identification, such as the quest for efficient procedures and the statistical
analysis with finite-data.
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1 Introduction

Subspace identification has attracted a lot of attention
in the last two decades. It is also fair to say that the
last few years have witnessed a renewed interest in this
topic for essentially two reasons: first the introduction
of new methods which have allowed subspace identifica-
tion to be applied with closed loop data [12,11,40,25,16]
and second a whole body of results on the asymptotic
statistical properties of subspace methods which have
allowed, on the one side, to asses accuracy of subspace
estimators [4,2,13,9,24] and on the other to compare dif-
ferent methods [5,3,2,14,7,8].

Extension of subspace algorithms to closed loop operat-
ing conditions have required, at a certain stage, the in-

1 This work has been supported in part by the national
project New methods and algorithms for identification and
adaptive control of technological systems funded by MIUR.
Part of this work has been presented at the 2006 IFAC SYSID
Symposium held in Newcastle, Australia and at the 2006
IEEE CDC conference held in San Diego, USA.

troduction of two step procedures (see [25,44,31]) which
were needed to eliminate undesired terms due to feed-
back. This was due to the lack of stochastic realization
procedures indicating how the state space could be con-
structed in the presence of feedback. An overview of
these realization procedures can be found in [12,11,16]
and references therein. The reader is also referred to
[38,37] for early contributions advocating for two-step
procedures even for “open loop” identification. There,
an “iterative” CCA which makes use of the Markov pa-
rameters estimated in a preliminary stage was proposed.
In [38] it was also conjectured that the two step CCA
could possibly lead to asymptotic efficiency 2 .

Often the preliminary estimation has been performed
using Vector AutoRegressive with eXogenous inputs
(VARX) models. Some analysis regarding the role of
VAR models in subspace identification was performed
in [18] where it was shown that the CCA algorithm
introduced in [30] is asymptotically equivalent (in the

2 In this paper we shall always use the word efficient assum-
ing Gaussian distributions of the data.
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sense of having the same asymptotic distribution of the
estimators) to a procedure which first estimates a long
VAR model and then does balanced model reduction.

Also some preliminary recent work relating VARX mod-
els with subspace procedures can be found in [42,36].

In this paper we shall be concerned with a class of algo-
rithms which we group under the name Predictor Based
Subspace Identification. This terminology stems from
the fact that these algorithms aim at identifying a “pre-
dictor model” in a way that reminds of prediction er-
ror methods (PEM). We refer the reader to the papers
[16,17] for a thorough discussion of the basic issues. The
algorithms that shall be discussed here are the SSARX
algorithm by Jansson [25], the PBSID 3 algorithm (in-
troduced in [16] under the name “whitening filter”), its
“optimized” version 4 (PBSIDopt hereafter) introduced
in [7] and the algorithm presented in [35] by Ljung and
McKelvey.

We shall expand on two recent contributions (see [8] and
[10]) and discuss the role of VARX models in subspace
algorithms based on predictor identification; we shall
show that the preliminary step based on VARX mod-
els, explicitly used in [25] is actually present, in a way
or another, in all these algorithms. We also observe that
the bank of predictors used in [35] to overcome problems
due to feedback were constructed using VARX models.
It turns out, as we shall see later in this paper, that the
algorithm proposed in [35] is very much related to the
PBSIDopt introduced in [7]. For this reason, even though
PBSIDopt has been developed independently from [35]
and actually derives from a theoretically sound optimiza-
tion, we regard the paper [35] as a fundamental early
contribution to closed-loop subspace identification.

In particular the main results of this paper can be enu-
merated as follows:

(a) SSARX by Jansson [25], which requires a prelimi-
nary VARX modeling step, is asymptotically equiv-
alent, in the sense of yielding the same asymptotic
distribution of the estimators, to PBSID. Some pre-
liminary results have appeared in [8].

(b) The “optimally-weighted” projection step involved
in PBSIDopt in [7] is actually equivalent (here in
the sense of giving the same numerical results) to
estimating a VARX model followed by the usual
steps of subspace identification 5 . Some preliminary
results can be found in [10].

3 Short for “Predictor Based Subspace IDentification”.
4 The word “optimized” refers to the fact that a projection
step is replaced by an “optimally weighted” (Markov) esti-
mator.
5 Even though some preliminary results along these lines
have already been presented in [8], the author would like to
thank an anonymous reviewer of the paper [7] which have

(c) The algorithm presented by Ljung and McKelvey in
[35] is equivalent to a weighted version of PBSIDopt

In our opinion the significance of these results with re-
spect to the current state of the art in subspace identi-
fication can be described as follows:

(a) One contribution of this paper, which can be seen as
a natural continuation of previous works [3,5,14,7],
is to provide a comparison between recently pro-
posed methods, trying to obtain a more unified pic-
ture of subspace algorithms; we believe this is use-
ful since subspace algorithms have grown rapidly
in number in the last few years [35,25,41,16] with
very little insight, if any, concerning their relative
efficiency.

(b) Second, by showing that PBSIDopt is numerically
equivalent to estimating a VARX model followed by
the usual steps of subspace identification, we pro-
vide a way to implement the PBSIDopt algorithm
with a much lower computational complexity then
originally discussed in [7]. We would like to remind
that PBSIDopt share the advantages of PBSID in
that it delivers consistent estimators with closed
loop data while comparing favorably, in the sense
of asymptotic variance, to CCA for the open loop
case. In fact it was shown in [7], Theorem 5.3, that
the asymptotic variance of PBSIDopt is less or equal
than that of CCA for any choice of the input signal.
The fact that CCA is known to be asymptotically
efficient 6 for time series identification (=no inputs)
[3] and optimal for white inputs [5] strengthens the
significance of our result.

(c) Last but not least, the relation with VARX model-
ing followed by model reduction, together with the
results in [18,2,5,7], might be very helpful, in the au-
thor’s opinion, in future developments of subspace
identification. We also refer the reader to the paper
[50] for a discussion and early references on the use
of high order AR models for identification of Au-
toRegressive Moving Average (ARMA) models. In
particular all these results could provide:

i) suggestions on how subspace procedures could
be modified such as to reach asymptotic effi-
ciency; recall for instance that in the case of no
observed inputs [50] derives an asymptotically
efficient ARMA parameter estimation method
based on AR modeling followed by model re-
duction.

ii) a tool to introduce structure in the identifica-
tion problem (delays, inputs which do not affect
certain outputs etc.) which might turn out to be
very useful when handling systems with large
numbers of input-output channels (see e.g. the

underlined the relevance of the comparison performed in this
paper; part of the merit of this paper should also go to him.
6 When both the past and future horizon go to infinity with
the number of data.
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plenary lecture given by Yucai Zhu at the re-
cent SYSID in Newcastle [53] and also [23]).

Concerning the relation of subspace methods with
VARX modeling, recall that it was shown in [18] that, for
time series identification (i.e. no inputs) VAR modeling
followed by balanced model reduction is asymptotically
equivalent to the CCA method, which is asymptotically
efficient as shown in [3]. It has also been shown in [7]
that PBSID (and therefore its “optimized” version) is
asymptotically equivalent to CCA for time-series iden-
tification and when input signals are white.

Hence, at least for white inputs and time series identi-
fication PBSID “does model reduction right”. The sit-
uation is different when there are inputs, and they are
colored. The PBSIDopt performs better than CCA but
it is not clear whether it is efficient in general; note that
in [38] it was conjectured that pre-estimation of certain
Markov parameters might be a way to obtain efficient
subspace procedures.

In [31] it is claimed that a procedure which is very much
related to the SSARX algorithm might be efficient; how-
ever, in [31] it is claimed that efficiency is reached for
both past and future horizon which go to infinity. This
claim appears to be wrong since, on the contrary, de-
pending upon the input characteristics, the asymptotic
variance might increase or decrease as a function of the
future horizon (see [7],[6]). Note also that in [6] the al-
gorithm discussed in [31] is shown to be asymptotically
equivalent to SSARX and hence, from the results of this
paper, also to PBSID.

We believe existence of an efficient subspace procedure
is worth investigating.

We warn the reader that this paper does not mean to
provide an exhaustive coverage of the state of the art in
subspace identification but rather an analysis of a spe-
cific class of algorithms as mentioned earlier in the intro-
duction. Many algorithms are not discussed [26,28,27]
or just mentioned in passing [42,36,41,44].

The structure of the paper is as follows. In Section 2 we
state the problem and set up notation; Section 3 briefly
recalls the algorithmic steps while Section 4 states the
main results of this paper contained in Theorem 4.1,
Theorem 4.2 and Proposition 4.6 together with some
simulation results. Section 5 contains some conclusions.
The most technical parts of the proofs are postponed to
the Appendix.

2 Statement of the Problem and Notation

Let {z(t)}, t ∈ Z, z := [y> u>]>, be a (weakly) station-
ary second-order ergodic stochastic process where y(t)
and u(t) are respectively the output (p dimensional) and

input (m dimensional) signals of a linear stochastic sys-
tem in innovation form

{
x(t + 1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t)
t ≥ t0.

(2.1)
We allow for feedback from {y(t)} to {u(t)} [21], i.e.
we consider “closed loop” identification. Without loss
of generality we shall assume that the dimension n of
the state vector x(t) is as small as possible, i.e. the rep-
resentation (2.1) is minimal. For simplicity we assume
that D = 0, i.e. there is no direct feedthrough. For fu-
ture reference we define Ā := A−KC. We shall assume
that spectral density matrix of z, Φ(z) is rational and
bounded away from zero on the unit circle z = ejω. Let µi

denote the zeros of the spectral density matrix which are
inside the closed unit disc. We define ρ := max (| µi |).
From the assumption Φ(ejω) > cI > 0 it follows that
ρ < 1. Note in particular that 1 > ρ ≥ max

(| λi(Ā) |)
where λi(Ā) is the i− th eigenvalue of Ā.

The white noise process e, the innovation of y given the
past of z, is defined as the one step ahead prediction
error of y(t) given the (strict) past of z up to time t.

Given two sequences of (scalar) random variables xN

and gN , we shall say that xN is OP (gN ), which we shall
write xN = OP (gN ), if, ∀ε, ∃M s.t.

supNP [| xN/gN |> M ] < ε

In particular if xN = OP (1) we say that xN is bounded
in probability 7 ; note that xN = OP (gN ) means that
xN/gN is bounded in probability.

Similarly, xN = oP (gN ) means that, ∀δ > 0,

limN→∞P [| xN/gN |> δ] = 0

If both xN and gN are deterministic sequences, say
xN and gN , then xN = o(gN ) has the usual meaning
limN→∞xN/gN = 0. The symbol ·= shall denote equal-
ity in probability up to oP (1/

√
N) terms, which we shall

call asymptotic equivalence. In fact, from standard re-
sults in asymptotic analysis (see for instance [19]) terms
which are oP (1/

√
N) can be neglected when studying

the asymptotic distribution.

We shall use the notations oP (·), OP (·), o(·) or O(·) to
denote random matrices (of suitable dimensions possibly
depending on N) whose elements are respectively oP (·),
OP (·), o(·) or O(·) uniformly. Uniformity is needed when

7 Sometimes this is stated saying that xN is “uniformly
tight”. For instance every sequence of random variables con-
verging in distribution is uniformly tight.
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the matrices’ sizes increase with N . In this paper unifor-
mity shall be guaranteed by stationarity of the processes
involved.

Note also, for future reference, that if xN = OP (1/
√

N)
and yN = OP (1/

√
N), then xNyN = oP (1/

√
N).

Our aim is to identify the system parameters (A, B,C, K),
or equivalently the transfer functions F (z) = C(zI −
A)−1B and G(z) = C(sI − A)−1K + I, starting from
input-output data {ys, us}, s ∈ [t0, T + N ], generated
by the system (2.1).

Throughout the paper the symbol t shall denote
“present”, t0 shall be the initial time from which data
are collected, so that t− t0 is the “past horizon”; T shall
be a design parameter so that T − t is the number of
future lags used to form predictors, commonly known
as the “future horizon” 8 , while N shall be the length
of the finite tails 9 .

The analysis reported in this paper requires that both
N , and t − t0 go to infinity. We remind the reader that
t− t0 has to go to infinity at a certain rate depending on
the number N of data available. Details can be found, for
instance, in [5] where the following assumption is made:

Assumption 1 The past horizon t− t0 goes to infinity
with N while satisfying:

t− t0 ≥ logN−d/2

log|ρ| , 1 < d < ∞
t− t0 = o (log(N)α) , α < ∞

(2.2)

Under this assumption the effect of terms due to mishan-
dling of the initial condition at time t0 are oP (1/

√
N)

and therefore can be neglected. Moreover, (2.2) ensures
that, when regressing onto past data and taking the limit
as N goes to infinity, the computation of sample covari-
ance matrices of increasing size (with t − t0) does not
pose any complication in the sense that their limit is well
defined and equal to the population counterpart (see the
discussion after Lemma 4 in [5]).

In order to simplify the analysis in this paper we shall
keep the future horizon ν fixed (and finite). We warn
the reader that, for instance, asymptotic efficiency of the
CCA method for time series identification requires ν to
grow with the sample size (see [2]). We believe however
that our results are significant even under this assump-
tion since the comparison holds for fixed yet arbitrarily
large ν.

8 Respectively the number of block rows in the block Hankel
data matrix containing the past and future data.
9 This is the parameter j in the notation of Van Overschee
and De Moor [47] i.e. the number of columns in the block
Hankel data matrices used in subspace identification.

According to Assumption 1 the total number of data is
T + N − t0 + 1 = T − t + N + o(log(N)α); therefore
limN→∞ T+N−t0+1

N = 1 (which implies, in particular,
O(N) = O(T + N − t0 + 1). For this reason (and for
convenience of notation) when dealing with asymptotic
results, we shall refer to the length of the finite tails N
rather to the total number of data T +N−t0+1 (e.g. we
shall use oP (1/

√
N) and not oP (1/

√
T + N − t0 + 1)).

Remark 2.1 [On the necessity of Assumption 1]
One may argue that having to deal with an “infinite” past
horizon might not be very attractive. This condition, as
discussed in detail in [16], is needed to ensure consistency
in closed loop. There is however another important rea-
son to keep this assumption. Essentially subspace algo-
rithms are “covariance based” methods 10 ; therefore, as
discussed in [51,39] for the MA/ARMA case, it is neces-
sary to estimate an infinite number of covariances to ob-
tain asymptotically efficient estimators (see also [50][Re-
mark 4, pag. 289]). This requires that t− t0 goes to infin-
ity. Therefore, a necessary condition for a subspace algo-
rithm to reach the Cramér-Rao lower bound is that t− t0
goes to infinity, as required by Assumption 1. Of course
this does not mean that an algorithm allowing t−t0 →∞
will automatically be efficient.

We shall use the standard notation of boldface (lower-
case) letters to denote random variables. Lowercase let-
ters denote sample values of a certain random variable.
For example we shall denote with z(t) the random vector
denoting the joint process and with zt the sample value
of z(t). We shall use capitals to denote the tail of length
N . For instance Zt := [zt zt+1, . . . zt+N−1]. These are
the block rows of the usual block Hankel data matrices
which appear in subspace identification.

When dealing with tails of length different from N we
shall add the number of columns as a superscript; for
instance ZM

t := [zt zt+1, . . . zt+M−1]

For −∞ ≤ t0 ≤ τ ≤ t ≤ T ≤ +∞ we define the Hilbert
space of scalar zero-mean random variables

Z[τ, t) := span {zk(s); k = 1, . . . , m + p, τ ≤ s < t }

where the bar denotes closure in mean square, i.e. in the
metric defined by the inner product 〈 ξ, η 〉 := E{ξη}, the
operator E denoting mathematical expectation. Similar
definitions hold for Y[τ, t) and U[τ, t).

When τ = −∞ we shall use the shorthands Z−t for
Z[−∞, t) The space generated by z(s), −∞ < s < ∞
shall be denoted with the symbol Z. For convenience of
notation we denote with ν := T − t the future horizon.

10 One may argue that there are “data based” methods, but
this is just a computational aspect.
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Given a subspace C ⊆ Z, we shall denote with E[a |
C] the orthogonal projection of the random variable a
onto C; in the Gaussian case the linear projection coin-
cides with conditional expectation, i.e. E[· | C] = E[· |
C]. Let c be a (finite) basis for C. Using the notation
Σab := E

[
ab>

]
for the covariance matrix between the

zero mean random vectors a and b, in the finite dimen-
sional case E[a | C] will be given by the usual formula

E[a|C] = ΣacΣ−1
cc c. (2.3)

Defining also the projection errors ã := a − E[a|C] and
b̃ := b−E[b|C], the symbol Σab|c will denote projection
error covariance (conditional covariance in the Gaussian
case) Σab|c := Σãb̃ = Σab − ΣacΣ−1

cc Σcb. Given two
trivially intersecting subspaces C ⊆ Z, B ⊆ Z, C ∩ B =
{0}, E‖B[· | C] shall denote the oblique projection onto C

along B (see [20]) and can be computed by the formula:

E‖B [a|C] = Σac|bΣ−1
cc|bc. (2.4)

For column vectors formed by stacking past and/or
future random variables we shall use the notation:
z[t,s] :=

[
z>(t) z>(t + 1) . . . z>(s)

]>
. Finite (block)

Hankel data matrices will be denoted using capitals, i.e.

Z[t,s] :=
[

Z>t Z>t+1 . . . Z>s
]>

.

Spaces generated by finite tails, i.e. spaces generated by
the rows of finite block Hankel data matrices, will be de-
noted with the same symbol used for the matrix itself.
Sample covariances will be denoted with the same sym-
bol used for the corresponding random variables with a
“hat” on top. For example, given finite sequences At :=
[at, at+1.., at+N−1] and Bt := [bt, bt+1.., bt+N−1] we shall
define the sample covariance matrix

Σ̂ab :=
1
N

N−1∑

i=0

at+ib
>
t+i.

Under our ergodic assumption lim
N→∞

Σ̂ab
a.s= Σab.

The orthogonal projection onto the row space of a ma-
trix shall be denoted with the symbol Ê; for instance,
given a matrix Ct := [ct, ct+1, .., ct+N−1], Ê[·|Ct] will be
the orthogonal projection onto the row space of the ma-
trix Ct; the symbol Ê[At|Ct] shall denote the orthogo-
nal projection of the rows of the matrix At onto the row
space of Ct, and is given by the formula

Ê[At|Ct] = Σ̂acΣ̂−1
cc Ct (2.5)

As above, given a matrix Ct, we define the projection
errors Ãt := At−Ê[At|Ct] and B̃t := Bt−Ê[Bt|Ct]. The
sample covariance (conditional sample covariance) of the

projection errors is denoted with the symbol Σ̂ab|c :=
Σ̂ãb̃ and computed by the formula

Σ̂ab|c := Σ̂ab − Σ̂acΣ̂−1
cc Σ̂cb.

We shall denote with Ê‖Bt
[·|Ct] the oblique projection

along the space generated by the rows Bt onto the space
generated by the rows of Ct (provided the intersect only
at zero). As above, the oblique projection can be com-
puted using the formula:

Ê‖Bt
[At|Ct] = Σ̂ac|bΣ̂−1

cc|bCt. (2.6)

For future reference we also define the extended observ-
ability matrix

Γ̄>ν :=
[

C> Ā>C>
(
Ā>

)2
C> . . .

(
Ā>

)ν−1
C>

]
.

(2.7)

3 State Space Construction

It is well known [47,32,15] that identification using sub-
space methods can be seen as a two step procedure as
follows:

(a) Construct a basis X̂t for the state space via suit-
able projection operations on data sequences (block
Hankel data matrices)

(b) Given (coherent) bases for the state space at time
t (X̂t) and t + 1 (X̂t+1) solve

{
X̂t+1 ' AX̂t + BÛt + KEt

Yt ' CX̂t + Et

(3.1)

in the least squares sense.

Different subspace algorithms have different implemen-
tations of the first step while the second remains the
same for virtually all algorithms 11 . For this reason we
compare algorithms on the basis of step (a). We shall
identify procedures which are (asymptotically) equiva-
lent, modulo change of basis, as the first step is con-
cerned.

3.1 PBSID algorithm

The construction of the state space using this algorithm
involves several oblique projections. The projection of

11 In this paper we shall not be concerned with algorithms
based on the so-called “shift invariance” method [2].
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each (block) row Yt+h, h = 0, .., ν, can be seen as a long
VARX model as follows

Ŷt+h := Ê
[
Yt+h | Z[t0,t+h)

]
=

= Ψ̂1,hZt+h−1 + · · ·+ Ψ̂t+h−t0,hZt0

(3.2)

from which the oblique projections 12

Ŷ P
t+h := Ê‖Z[t,t+h)

[
Yt+h | Z[t0,t)

]
=

=
∑t−t0+h

i=h+1 Ψ̂i,hZt+h−i ' CĀh−1Xt

(3.3)

The last approximate equality has to be understood in
the sense that, asymptotically in N ,

ŷP (t + h) := E‖Z[t,t+h)

[
y(t + h) | Z−t

]
= CĀh−1x(t)

(3.4)
holds. Then one stacks all the predictors

Ŷ P
[t,T ) :=




Ŷ P
t

Ŷ P
t+1

...

Ŷ P
T−1



' Γ̄νXt.

From the Singular Value Decomposition

W−1
p Ŷ P

[t,T ) = PDQ> = [PnP̃n]

[
Dn 0

0 D̃n

] [
Q>

n Q̃>
n

]

(3.5)
where Wp is a weighting matrix which can be chosen
appropriately, an estimate of the observability matrix
Γ̄ν is obtained discarding the “less significant” singular
values (i.e. pretending D̃n ' 0) from

ˆ̄Γν = WpPnD1/2
n .

and consequently a basis for the state space

X̂PBSID
t := ˆ̄Γ−L

ν Ŷ P
[t,T )

X̂PBSID
t+1 := ˆ̄Γ−L

ν Ŷ P
[t+1,T ]

(3.6)

where ˆ̄Γ−L
ν is the left inverse defined by

ˆ̄Γ−L
ν :=

(
ˆ̄Γ>ν W−>

p W−1
p

ˆ̄Γν

)−1 ˆ̄Γ>ν W−>
p W−1

p . (3.7)

12 The superscript P reminds that the quantity has to do
with the “predictor-based” algorithm.

3.2 SSARX Algorithm

The algorithm described in the previous section can be
seen as a “geometric” version of the SSARX algorithm
by Jansson [25]. Instead of computing the oblique pro-
jections (3.3), or, equivalently, instead of estimating ν+1
long VARX models, Jansson estimates just one (long)
VARX model

YT ' Φ̂1ZT−1 + Φ̂2ZT−2 + · · ·+ Φ̂T−t0Zt0 (3.8)

where without loss of generality we have taken the length
of the VARX model equal to T−t0; then the effect of the
future inputs/outputs is removed using the estimated
parameters Φ̂k as 13 :

Ŷ S
[t,T ) := Ê

[
Y[t,T ) − ˆ̄HS

ν Z[t,T ) | Z[t0,t)

]
(3.9)

where

ˆ̄HS
ν :=




0 0 . . . 0

Φ̂1 0 . . . 0
...

. . . . . .
...

Φ̂ν . . . Φ̂1 0




The remaining part is essentially the same as in the pre-
vious Section provided 14 Ŷ S

[t,T ) is substituted to Ŷ P
[t,T ).

3.3 “Optimized” PBSID Algorithm

The optimized version of PBSID introduced in [7]
(PBSIDopt) differs from the original PBSID algorithm
in the computation of the predictors (3.2); in fact in the
optimized algorithm the estimation of the predictors
Ŷt+h is formulated as a weighted least squares problem
as described in this Section.

Let us define K :=
[
Āt−t0−1[K B] Āt−t0−2[K B] . . . [K B]

]
.

Recall that

Yt+h = CĀhXt+

+
∑h

i=1 CĀi−1 (KYt+h−i + BUt+h−i) + Et+h

= CĀhKZ[t0,t)+

+
∑h

i=1 CĀi−1 (KYt+h−i + BUt+h−i)+

+Et+h + oP (1/
√

N)

:= ΞhZ[t0,t)+

+
∑h

i=1 ΨhiZt+h−i + Et+h + oP (1/
√

N)
(3.10)

13 The superscript S stands for “SSARX”.
14 Also a specific choice of Wp is done by Jansson. We leave
this choice unspecified here since equivalence holds for every
choice of Wp.
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where the last equality defines the matrices Ξh and
Ψhi. Stacking the data and using (3.10) (discarding
oP (1/

√
N) terms; this is a delicate matter see Appendix

B in [7] for details) we obtain:




Yt

Yt+1

...

YT




·=




Ξ0

Ξ1

...

Ξν




Z[t0,t)+

+




0 0 . . . 0

Ψ11 0 . . . 0
...

...
. . .

...

Ψνν . . . Ψν1 0




Z[t,T ] +




Et

Et+1

...

ET




(3.11)
Observe that the lower triangular matrices in (3.11) are
Toeplitz, since Ψij = CĀj−1[K B], ∀i, j. The projec-
tion in (3.2) is equivalent to solving (3.11) “row by row”;
hence the Toeplitz structure is not preserved after esti-
mation, i.e. Ψ̂ij 6= Ψ̂i′j , i 6= i′ almost surely.

This is equivalent to solving the least squares problem
obtained vectorizing (3.11):

Y :=




vec (Yt)

vec (Yt+1)
...

vec (YT )



·=SP ΩP +




vec (Et)

vec (Et+1)
...

vec (ET )




= SP ΩP +E

(3.12)
where the matrix SP has the form

SP = block diag
{

(Z>[t0,t) ⊗ I), . . . , (Z>[t0,T ) ⊗ I)
}

(3.13)
and ΩP is given by

ΩP =
[
vec> (Ξ0) vec> (Ξ1) vec> (Ψ11) . . .

. . . vec> (Ξν) . . . vec> (Ψν1)
]>

;
(3.14)

Finding an “optimal” solution Ω̂Popt (Markov estimator)
of

Y
·=SP ΩP + E, (3.15)

where oP (1/
√

N) terms have been neglected 15 , gives an
estimator Ω̂Popt of ΩP which has the smallest asymptotic
variance among all linear (asymptotically unbiased) esti-
mators based on (3.12). Incidentally, this has allowed to
show in [7] that this “optimized” version yields, asymp-
totically, a lower variance of the estimators of any system

15 See Appendix B in [7] for a rigorous discussion.

invariant as compared to the standard PBSID and, more
importantly, to the classical CCA algorithm [30,46].

To this purpose it is very useful to observe that the “noise
term” E can be written in the form

E = Lvec
(
EN+ν

t

)
(3.16)

where L is a “selection 16 matrix” of size pNν × p(ν +
N). We refer the reader to the paper [7] for an explicit
expression of L; suffices it to remind that L has full
column rank. We shall later use the specific structure of
the column space of L and of its left kernel. Equation
(3.16) shows that indeed E has a singular covariance
matrix R = Var {E} = L (I ⊗ Λ) L>.

In the paper [7] it is shown how (3.15) can be converted
into a least squares problem with full rank noise covari-
ance and equality constraints (see also [43,52,45,20]).
Remarkably, as we shall see in the next Section, this is
equivalent to estimating a long VARX model of length
t− t0, using data in the interval [t0, T + N − 1].

Using the estimator Ω̂Popt , the oblique projections Ŷ P
t+h

(3.3) can be substituted with Ŷ
Popt

t+h = Ξ̂Popt

h Z[t0,t)

in the SVD step (3.5); hence, defining Ŷ
Popt

[t,T ) :=
[(

Ŷ
Popt

t

)>
,

(
Ŷ

Popt

t+1

)>
, . . . ,

(
Ŷ

Popt

T−1

)>]>
, an estima-

tor for the state shall be given by

X̂
Popt

t :=
(
ˆ̄ΓPopt

ν

)−L

Ŷ
Popt

[t,T ) . (3.17)

where ˆ̄ΓPopt
ν is the estimate obtained substituting Ŷ

Popt

t+k

to Ŷ P
t+h in (3.5).

Also the “shifted” oblique projections used for the com-
putation of the state at time t + 1 (see (3.6)) can be
substituted by

X̂
Popt

t+1 :=
(
ˆ̄ΓPopt

ν

)−L




Ξ̂Popt

1 Ψ̂Popt

11

Ξ̂Popt

2 Ψ̂Popt

22

...
...

Ξ̂Popt
ν Ψ̂Popt

νν




Z[t0,t+1). (3.18)

Similarly an estimator of the innovation sequence Et can
be found by

Ê
Popt

t := Yt − Ê
[
Ŷ

Popt

t |X̂Popt

t

]
(3.19)

16 We call “selection matrix” a matrix formed with zeros and
ones in which each row all entries are zero except for one.
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4 Main Results

This section contains the main results of this paper;
first we shall discuss the (asymptotic) equivalence be-
tween PBSID and SSARX and later we shall discuss
how PBSIDopt can be implemented using VARX mod-
els. Last PBSIDopt is related to the algorithm of Ljung
and McKelvey [35] which, in some sense, might be seen
as a predecessor of all these methods.

For clarity of exposition we divide this task in three sepa-
rate and self-contained subsections, each complemented
with some simulation results.

4.1 Asymptotic Equivalence of PBSID and SSARX

The first main result of this paper can be summarized
as follows:

Theorem 4.1 Assume the past horizon t−t0 grows with
N according to Assumption 1. Denote with Θ̂P and Θ̂S

the estimators of any system invariant Θ using respec-
tively the PBSID algorithm and the SSARX algorithm.
Then, under standard assumptions (see, e.g. [9,2]) on
the innovation process e

Θ̂P ·=Θ̂S (4.1)

holds.

We first state the following technical lemma which shall
be useful in the proof of this result:

Lemma 4.2 Let the pair (y,u) satisfy the assumptions
of Section 2. Assume also the coefficients of the following
two VARX models

y(t) =
K1∑

i=1

αiz(t− i) + eK1(t) (4.2)

and

y(t) =
K2∑

i=1

βiz(t− i) + eK2(t) (4.3)

are estimated (in the least square sense) from data
{ys, us} respectively in the intervals s ∈ [t−K1, t+N−1]
and s ∈ [t − K2, t + N − 1]. Assume also that
K1 ≥ K2 ≥ Kmin go to infinity with N while K1,Kmin

satisfy 17 Assumption 1. Then for any fixed and finite f

α̂j
·=β̂j j = 1, ..., f (4.4)

The same holds if the parameters in (4.2) and (4.3) are
estimated using data in the intervals [t1−K1, t1 +N−1]

17 Where the role of t0 is played respectively by t10 := t−K1

and tmin
0 := t−Kmin.

and [t2 −K2, t2 + N − 1] respectively as long as t1 − t2
is fixed and finite.

Proof. The proof follows from equations (4.4) and (4.5)
in [29], by letting K1 = hmax, K2 = ĥn, Kmin = hmin

and l(h) = [0, .., 0, 1, 0, .., 0, ..]>. Of course, in our case
P [K2 ∈ [Kmin,K1]] = 1. Note that the result in [29] is
much stronger and holds for more general linear combi-
nations l(h) and for data dependent order selection rules
K2 s.t. P [K2 ∈ [Kmin,K1]] → 1 as N →∞. This is use-
ful here since it makes it easy to extend our results also
to the case in which the length of past and future hori-
zons are estimated from data provided the conditions in
[29] are still verified. However we shall not discuss this
extension here. 2

Proof of Theorem 4.1. Our goal is essentially to show
that Ŷ S

[t,T ) and Ŷ P
[t,T ) can be used interchangeably as far

as asymptotic properties are concerned.

To this purpose, note that defining

ˆ̄HP
ν :=




0 0 . . . 0

Ψ̂1,1 0 . . . 0
...

. . . . . .
...

Ψ̂ν,ν . . . Ψ̂1,ν 0




Ŷ P
[t,T ) can be rewritten as

Ŷ P
[t,T ) = Ê

[
Y[t,T ) − ˆ̄HP

ν Z[t,T ) | Z[t0,t)

]
(4.5)

which has the same form as (3.9) provided ˆ̄HP
ν is substi-

tuted with ˆ̄HS
ν . Using this observation we can write

Ŷ S
[t,T ) − Ŷ P

[t,T ) =
(

ˆ̄HP
ν − ˆ̄HS

ν

)
Ê

[
Z[t,T ) | Z[t0,t)

]

(4.6)
It is obvious that, provided we can show that

ˆ̄HP
ν
·= ˆ̄HS

ν , (4.7)

using Ŷ P
[t,T ) in lieu of Ŷ S

[t,T ) does not change the asymp-
totic properties; in fact, under (4.7), also the difference
Ŷ S

[t,T ) − Ŷ P
[t,T ) will be oP (1/

√
N).

Inspecting the structure of the matrices ˆ̄HS
ν and ˆ̄HP

ν , it
is rather simple to see that showing (4.7) is equivalent
to prove that

Φ̂i
·=Ψ̂i,h i = 1, .., h h = 1, .., ν (4.8)

Hence the last part of the proof shall be concerned with
(4.8).
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Fig. 1. Example 1. Sample Variance (Monte Carlo estimate)
vs. normalized frequency (ω ∈ [0, π]). Solid with triangles
(4): PEM. Dashed with crosses (+): PBSID. Dashed with
circles (o): SSARX. Dotted with crosses (+): asymptotic
variance for PBSID.

Let us fix for a moment h = h̄. Showing that Φ̂i
·=Ψ̂i,h̄

for i = 1, .., h̄ amounts to prove that the estimators (Φ̂i

and Ψ̂i,h̄, i = 1, .., h̄) of the first h̄ coefficients of two long
VARX models satisfying

(a) the orders T − t0 and t − t0 + h̄ differ of exactly
ν − h̄ and both go to infinity at a rate specified by
Assumption 1.

(b) the parameters are estimated essentially using the
same data (essentially here means that there might
by a finite number of data points which are used in
one of the two and are not used in the other and
vice versa)

are asymptotically equivalent. This result has been for-
malized in Lemma 4.2 above. Repeated application of
Lemma 4.2 to the VARX regressions (3.2) and (3.8) al-
lows indeed to prove (4.8) and hence (4.7), from which
the statement of Theorem 4.1 follows. 2

We now report some simulation results concerning the
equivalence of PBSID and SSARX. We consider two sys-
tems in innovation from (2.1) where the input given in
closed loop

u(t) = r(t)−Hi(z)y(t).

Example 1 is a first order ARMAX system with A1 =
0.7, B1 = 1, K1 = 1, C1 = 1, D1 = 0, Var{e1} = 1,
with a proportional controller H1(z) = 1.5 and white
reference signal r(t) = 5n(t) where n(t) is zero mean
unit variance white noise uncorrelated from e(t).

Example 2 is a second order ARMAX system with

A2 =

[
1.5 −0.7

1 0

]
B2 =

[
1

0

]
K2 =

[
0

0

]

C2 = [1 0] D2 = 0 Var{e2} = 1

The reference signal is unit variance white noise uncor-
related with the innovation e(t) while the controller is a
first order system of the from

H2(z) = 0.2
0.1z − 0.5
z − 0.5

.

We compare the Monte Carlo estimate (500 Monte Carlo
runs) of the transfer function estimator (F̂ (z) := Ĉ(zI−
Â)−1B̂) variance (normalized by N) of SSARX and PB-
SID algorithms. The parameters chosen in the three sim-
ulation reported respectively in figures 1,2 are summa-
rized in table 4.1. The results of figure 1 refer to Exam-
ple 1 while those in figure 2 to Example 2. SSARX and

# t− t0 T − t = ν N

Fig. 1 10 10 1000

Fig. 2 10 10 1000

Fig. 2 30 10 3000

Table 1
Parameters chosen in the implementation.

PBSID are indistinguishable as predicted by the theory
in this paper in Example 1. As far as Example 2 is con-
cerned, while equivalence does not hold for small t− t0
and N , it does indeed hold (see figure 2, right plot) when
increasing N and t− t0.

4.2 Vector AutoRegressive implementation of the
PBSIDopt method

The second main result of this paper shows that, indeed,
the PBSIDopt can be efficiently implemented via VARX
estimation. Even though VARX models were introduced
also in previous contributions, among which [37,35,25],
in our framework the VARX models pop up quite nat-
urally from a theoretically sound “optimized” method.
This consideration constitutes, in the author’s opinion,
a starting point for future investigations.

Theorem 4.3 Consider the infinite VARX model

yt =
∞∑

i=1

Φizt−i + et (4.9)
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Fig. 2. Example 2. Left: “small” t − t0 = 10. Right: “large” t − t0. Variance (and its Monte Carlo estimate) vs. normalized
frequency (ω ∈ [0, π]). Solid with triangles (4) PEM. Dashed with crosses (+) PBSID. Dashed with circles (o) PBSIDopt.
Dotted with stars (∗): SSARX. Dotted: asymptotic variance for PBSID.

and denote with Φ̂i, i = 1, .., t− t0, the estimators of the
first t− t0 coefficients in (4.9) obtained solving 18

Y ν+N
t '

t−t0∑

i=1

ΦiZ
ν+N
t−i (4.10)

in the least squares sense.

The “optimally-weighted” solution to (3.15), i.e. the one
that yields the least asymptotic variance of the estimators
Ω̂Popt among all linear, asymptotically unbiased estima-
tors of ΩP based on the regression (3.15), is equivalent
to estimating the VARX model (4.10) in the sense that:




Ξ̂Popt

0

Ξ̂Popt

1

...

Ξ̂Popt
ν




=




Φ̂t−t0 . . . Φ̂T−t0 . . . Φ̂1

0 Φ̂t−t0 . . . . . . Φ̂2

...
...

. . .
...

...

0 . . . Φ̂t−t0 . . . Φ̂ν+1




(4.11)

and
Ψ̂Popt

ji = Φ̂i (4.12)

18 Note that the estimators are function of N and t − t0,
which according to Assumption 1 grows with N . In order to
streamline notation this dependence is not made explicit.

Proof. See the Appendix 2

Remark 4.4 It is worth mentioning that, with the “op-
timally weighted” (Markov) estimator of the coefficients
Ξi,Ψij, the estimate of the lower triangular matrix in
(3.11) is indeed Toeplitz (see eq. (4.12)). It is also inter-
esting to note that the estimate of the VARX coefficients
weighting the “far” past (i.e. Ψji for i > t− t0 in (3.2))
are set to zero by the “optimal” estimator (i.e. Ψ̂Popt

ji = 0
for i > t − t0). This is reasonable since, according to
Assumption 1, for i > t − t0 the Ψji’s go to zero faster
than 1/

√
N ; on the contrary, estimating these coefficients

would lead to errors which are of order 1/
√

N in prob-
ability. This also brings up the question of choosing the
length of the past horizon t− t0; the analysis of this paper
gives, together with the results in [18], a more theoreti-
cally sound foundation to the (usually adopted) practice
of determining t− t0 using standard order selection cri-
terions [33,22,45] for vector autoregressive models (see,
e.g. [1]). The reader is also referred to the recent paper
[29] which discusses automatic inference for infinite or-
der autoregressions.

Using the result of Theorem 4.3 the PBSIDopt algorithm
can be implemented as follows:

(a) Estimate the VARX model (4.9) as described in
(4.10); this may include estimation of the appropri-
ate t− t0 using standard criterions for VARX order
estimation.
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(b) Use the estimated coefficients as described in for-
mulas (4.11) and (4.12) to form the predictors

Ŷ
Popt

t+h =
t−t0+h∑

i=h+1

Ψ̂Popt

hi Zt+h−i =
t−t0∑

i=h+1

Φ̂iZt+h−i;

(4.13)
the state sequences X̂

Popt

t and X̂
Popt

t+1 are then ob-
tained as described in formulas (3.17) and (3.18).

This implementation has a much lower computational
complexity w.r.t. the implementation described in [7]
which involves solving the least squares problem (3.15)
directly.

In fact, step a) above involves the estimation of a VARX
model of length t − t0 (which, according to Assump-
tion 1, is O(log(N))); solving (4.10) has complexity
O(N(logN)2) (see [20] pag. 248). The order and state
estimation (step b) above) can be performed on the
“squared” version of the matrix Ŷ

Popt

[t,T ) . This second step
is common to all subspace algorithms. Instead step a)
has the same “order” of complexity than, e.g., CCA and
PBSID; however both these algorithms essentially esti-
mate ν long VARX models, increasing the complexity
of the first step roughly by a factor ν.

Hence the implementation described above of the
PBSIDopt compares favorably to a variety of subspace
procedures (among which PBSID or CCA) as far com-
putational complexity is concerned while, according to
Theorem 5.3 in [7], yielding lower asymptotic variance
than CCA. We remind also that the PBSIDopt algorithm
works (i.e. is consistent) regardless of the presence of
feedback.

These considerations make the algorithm described
above a strong alternative to standard used methods
for a variety of reasons, among which computational
complexity and asymptotic statistical properties (it is
consistent also in closed loop and gives lower variance
than the original PBSID and CCA).

Remark 4.5 [PBSIDopt vs. SSARX]
The main differences between the PBSIDopt and SSARX
algorithms are as follows: (i) the length of the ARX model
estimated is (in general) different for the two methods;
in particular SSARX uses order larger than ν (but in
[25] it is just required that the order be “high” to ensure
consistency), possibly chosen according to infinite-order
ARX models selection rules [29]); only the first ν co-
efficients are then used; instead PBSIDopt the order is
exactly t − t0; this results in the PBSIDopt filling with
zeros the Toeplitz matrix used to construct the bank of
predictors (see equation (4.11)); (ii) the SSARX meth-
ods projects the “corrected future” to form Ŷ S

[t,T ) (see eq.
(3.9)) while the PBSIDopt uses directly the estimated co-
efficients from the VARX modeling step to form the bank
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Fig. 3. Colored input spectrum: absolute value.

of predictors Ŷ
Popt

t+k (see eq. 3.17 and (4.11)). This makes
PBSIDopt even more advantageous from the computa-
tional point of view, since it does not require computing
the projection (3.9).

We consider the following examples, frequently used in
the literature of subspace identification, to illustrate the
result.

The first is an“open loop” experiment which contains all
the essential features of the “optimized” method i.e.: (i)
it is not efficient (it does not reach Cramér Rao) and (ii)
it gives (strictly) lower asymptotic variance than CCA.
Of course this example is performed in “open loop” to
allow the comparison with CCA. In this example the
original PBSID and the “optimized” version have the
same asymptotic behavior.

We consider the first order ARMAX model

y(t)− 0.5y(t− 1) = u(t− 1) + e(t) + 0.5e(t− 1)

The input is unit variance white noise passed through
the filter Hu(z)

Hu(z) =
z2 + 0.8z + 0.55
z2 − 0.5z + 0.9

;

the input spectrum is plotted in Figure 3.

We report in figure 4 results concerning the asymptotic
variance and the sample variance estimated over 100
Monte Carlo runs multiplied by the number N = 1000 of
data points used in each experiment of the deterministic
transfer function F (z) = 1

z−0.5

As a second example we consider a fifth order (marginally
stable) system in state space form (2.1) where (see
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Fig. 4. Asymptotic Variance (and its Monte Carlo estimate)
vs. normalized frequency (ω ∈ [0, π]) (ARMAX of order 1 ).
Solid with triangles (4) PEM, dashed-dotted with stars (∗):
CCA, dotted with crosses (+): (PBSID), dashed with circles
(o): PBSIDopt; dotted: asymptotic variance for PBSID, solid:
Cramér Rao lower bound.

[49,48]):

A =




4.40 1 0 0 0

−8.09 0 1 0 0

7.83 0 0 1 0

−4 0 0 0 1

0.86 0 0 0 0




C =
[

1 0 0 0 0
]

B =
[

0.00098 0.01299 0.01859 0.0033 −0.00002
]>

K =
[

2.3 −6.64 7.515 −4.0146 0.86336
]>

D = 0

and e(t) is unit variance white noise. The input u is
generated in closed loop by u(t) = 5r(t)−H(z)y(t); the
reference signal r(t) is unit variance white noise; H(z) is
given by:

H(z) =
0.63− 2.083z−1 + 2.8222z−2 − 1.865z−3 + 0.4978z−4

1− 2.65z−1 + 3.11z−2 − 1.75z−3 + 0.39z−4

We have also used t− t0 = 30, ν = 10 and N = 2000.

In this example PBSIDopt outperforms PBSID in the low
frequency band and performs slightly better than the inno-
vation estimation method (IEM hereafter ) [41] in the high
frequency band (see figure 4). The algorithm by Ljung and
McKelvey, which as shown in the next section is a weighted
version of PBSIDopt, performs worse than PBSIDopt and
IEM [41].
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Fig. 5. Asymptotic variance (and its Monte Carlo estimate)
Dashed-dotted with circles (o): PBSIDopt. Dashed-dotted
with stars (∗): IEM [41]. Dotted with crosses (+): PBSID.
Solid with diamonds (♦): Ljung-McKelvey [35]. Dotted with
triangles (4): PEM. Solid with stars (green) (∗): asymptotic
variance for IEM. Dotted with crosses (red) (+): asymptotic
variance for PBSID.

It has been checked that the original algorithm presented
in [7] and its alternative implementation presented in this
paper give indeed the same result. In particular conditions
(4.11) and (4.12) have been verified to hold for the estimated
coefficients of the PBSIDopt described in [7].

4.3 Relation with the method by Ljung and McKelvey

In this Section we shall briefly discuss the relation of
PBSIDopt with the algorithm presented in [35] by Ljung and
McKelvey. We shall not enter into a detailed description of
the algorithm for which we refer the reader to the original
paper; our description of the algorithm follows the Matlab
code provided in [34].

Suffices here to say that the first step is to construct a matrix

Ŷ LK
[t,T ) formed with predictors from which a basis of the state

space is extracted; Ŷ LK
[t,T ) shall play the same role as Ŷ

Popt

[t,T )

and Ŷ S
[t,T ) in PBSIDopt and SSARX respectively.

The main result can be stated as follows:

Proposition 4.6 Assume the model orders na and nb in
(4.14) are chosen according to na = nb = t−t0 and the VARX
coefficients Hi := [Hy,i Hu,i] in (4.14) are estimated letting

Ĥi := Φ̂i where Φ̂i are the least squares solution of (4.10).
Then the algorithm proposed in Ljung and McKelvey [35] is
a weighted version of PBSIDopt, in the sense that the two
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state construction steps differ only for the choice of a (row)
weighting matrix WLK , as made precise by formula (4.20).

Proof. Consider the VARX model

Ŷt|t−1 =

naX
i=1

Ĥy,iYt−i +

nbX
i=1

Ĥu,iUt−i (4.14)

Essentially the algorithm in [35] construct the state space
using a bank of predictors 19

Ŷ LK
[t,T ) :=

h
Ŷ >

t|t−1 Ŷ >
t+1|t−1 . . . Ŷ >

T |t−1

i>
(4.15)

where Ŷt+k|t−1 is computed recursively as

Ŷt+k|t−1 :=
Pk

i=1 Ĥy,iŶt+k−i|t−1 +
Pna

i=k+1 Ĥy,iYt+k−i

+
Pnb

i=k+1 Ĥu,iUt+k−i

(4.16)
The remaining steps (i.e. state construction and estimation
of A, B, C, K) follow the same lines as described in the pre-
vious Sections.

In order to make clear the link between the “predictor” used

in PBSIDopt and Ŷ LK
[t,T ), we rewrite (4.16) as follows:

Ŷt+k|t−1 −
Pk

i=1 Ĥy,iŶt+k−i|t−1 =
Pna

i=k+1 Ĥy,iYt+k−i+

+
Pnb

i=k+1 Ĥu,iUt+k−i

(4.17)

Using the assumption that na = nb = t − t0, letting Ĥi :=

[Ĥy,i Ĥu,i] and defining

WLK :=

2
6666664

I 0 . . . 0

−Ĥy,1 I . . . 0

...
. . .

. . .
...

−Ĥy,ν . . . −Ĥy,1 I

3
7777775

, (4.18)

equation (4.17) can be rewritten in matrix form as follows:

WLK Ŷ LK
[t,T ) =

2
6666664

Ht−t0 . . . . . . . . . . . . H1

0 Ht−t0 . . . . . . . . . H2

...
. . .

. . .
. . .

...
...

0 0 0 Ht−t0 . . . Hν+1

3
7777775

Z[t0,t);

(4.19)
from the assumption that the VARX model (4.14) has been
estimated using the same data as (4.9) it also follows that

Ĥi = Φ̂i. Therefore, using (4.19) the stacked predictors in

19 This implementation has been taken from the Matlab code
reported in [34].

(4.15) can be rewritten as

Ŷ LK
[t,T ) = W−1

LK

2
6666664

Φ̂t−t0 . . . . . . . . . . . . Φ̂1

0 Φ̂t−t0 . . . . . . . . . Φ̂2

...
. . .

. . .
. . .

...
...

0 0 0 Φ̂t−t0 . . . Φ̂ν+1

3
7777775

Z[t0,t)

= W−1
LK Ŷ

Popt

[t,T )

(4.20)
where (4.13) has been used in the last equality. 2

It is remarkable that the bank of predictors used in the orig-
inal paper [34] is indeed equivalent to a weighted version of
the bank of predictors used in PBSIDopt. It should not be
surprising that the original algorithm in [34,35] does not per-
form as well as PBSIDopt (see figure 4); in fact it is well known
that the (row) weighting does affect the asymptotic statisti-
cal properties of the estimators using the “state sequence”
approach (see [2]). Note that in [42] it was conjectured (even
though not proved) that an algorithm named HOARX is
equivalent (asymptotically) to the algorithm by Ljung and
McKelvey. As shown in this section (see, in particular, the
right hand side of (4.19) and formula (8) in [42]) this is not
exactly true; instead they differ up to a row weighting. To be
precise also some Markov parameters (those weighting the
“far past”) are set to zero (see (4.19)). Using the techniques
in [29] it would be possible to see that this does not make
any difference asymptotically as long as ν remains fixed (or
bounded above).

5 Conclusions

In this paper we have discussed several subspace algorithms
based on predictor model identification. It is shown that
all these algorithms can be formulated as VARX estimation
followed by model reduction.

In particular it has been shown that

(a) SSARX [25] and PBSID [16] are asymptotically equiv-
alent;

(b) PBSIDopt [7] is exactly equivalent (i.e. give the same
numerical results on finite data) to estimating a suitable
VARX model followed by the usual steps of subspace
identification (i.e. state estimation via SVD followed by
estimation of the system matrices)

(c) The algorithm by Ljung-McKelvey [34] is a weighted
version of PBSIDopt.

Experimental results (on simulated data) are included which
support the theoretical derivations. The results of this paper,
together with the comparison performed in [7], indicate that
PBSIDopt should be considered as one of the most appealing
in this class of algorithms for the following reasons:

(a) it is consistent under closed-loop operating conditions
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(b) it performs no worse than CCA (regardless of the
choice of input) for open loop data and better than
SSARX/PBSID with feedback

(c) it is prone to a very simple and computationally at-
tractive implementation via VARX modeling.

The simulation results reported in this paper seem to support
these statements. Even though PBSIDopt can be verified to
be asymptotically efficient in a number of examples 20 , it is
not so in general.

It was conjectured in [31] that an algorithm which is essen-
tially equivalent to PBSID is (asymptotically) efficient for
large ν (actually for t−t0 = ν →∞). Instead, as clearly seen
in figure 4 PBSID is not efficient for large ν. We have veri-
fied that indeed the performance does not change increasing
ν. Instead PBSID is nearly efficient for this example with
ν = 1 (see [7], figure 4 and [6].)

There is certainly much work to be done; in particular not
completely clear is, at the moment, the relation of these
methods with the new algorithms introduced in [42,36] and
with the IEM of [41].

Also the question of finite-data behavior is certainly of in-
terest and deserves, in our opinion, further investigation.

6 Acknowledgments

The author would like to thank Manfred Deistler, Lennart
Ljung, Giorgio Picci and Joe Qin for fruitful discussions on
the subject. Also an anonymous reviewer of the paper [7]
is gratefully acknowledged for comments and suggestions
contained in his report.

Appendix A: Proofs

Proof of Theorem 4.3. The proof makes use of the fine struc-
ture of the matrix L. Let us denote with LI a matrix which
columns span the image of L and with LK a matrix span-
ning the left kernel of L, so that [LILK ] is a full rank square
(pN(ν + 1)× pN(ν + 1)) matrix. The least squares problem
(3.15) can be transformed into the equivalent form

2
4 L>I

L>K

3
5Y =

2
4 L>I

L>K

3
5SP ΩP +

2
4 L>I

L>K

3
5E (A.1)

Note that, by construction, L>I L has full rank and therefore
L>I E has full rank covariance. Similarly L>KL = 0 and hence
L>KE = 0 (in the mean square sense).

In this way the least squares problem (3.15) with singular
noise covariance (3.15) is transformed into a least squares
problem with full rank noise covariance (the “top” part of
(A.1)) and equality constraints (the “bottom” part of (A.1)).

20 This might require that also ν grows with N . However the
analysis in this paper deals only with the case of fixed ν.

It is easy to show that LI can be chosen to be a selection
matrix so that L>I Y = vec

`
Y N+ν

t

´
:= YI . For future refer-

ence observe that L>I E = vec
`
EN+ν

t

´
:= EI so that (A.1)

can be rewritten as

YI = L>I SP ΩP + EI

s.t. L>KY = L>KSP ΩP
(A.2)

Let us introduce the pair of indexes (j, j̄) such that ν ≥ j̄ >
j ≥ 0 and define δ := j̄ − j. Then it is easy to see that there
exist matrices LK(j, j̄, l) so that

0 = L>K,(j, j̄, l)Y = Ξj

2
6666664

zt0+δ+l

zt0+δ+1+l

...

zt+δ−1+l

3
7777775
− Ξj̄

2
6666664

zt0+l

zt0+1+l

...

zt−1+l

3
7777775

+

+
Pj

k=1 Ψjkzt+δ−1+k+l+

−Pj̄
k=1 Ψj̄kzt−1+k+l

(A.3)
where, for each pair (j, j̄) with j̄ > j ∈ [0, ν − 1], l ranges in
the interval [0, N − δ − 1].

It is possible to extract exactly Nν − (ν + 1) independent
constraints (recall that LK has rank p(Nν − (ν + 1))) of the

form (A.3) by letting j ∈ [0, ν − 1], j̄ = j
′
:= j + 1, (so that

δ = 1) and l ∈ [0, N − 2]. With these choices the constraints
(A.3) can be written in the form:

h
Ξj Ψj1 . . . Ψjj

i
ZN−1

[t0+δ,t+δ+j−1) =

=
h

Ξj
′ Ψj

′
1 . . . Ψj

′
j
′
i
ZN−1

[t0,t+j̄−1)

(A.4)

Recalling that δ = j
′ − j = 1, and defining 0δ to be the zero

matrix of size p× δ(p+m), we can rewrite (A.4) in the form

h
01 Ξj Ψj1 . . . Ψjj

i
ZN−1

[t0,t+j
′−1)

=h
Ξj
′ Ψj

′
1 . . . Ψj

′
j
′
i
ZN−1

[t0,t+j
′−1)

(A.5)

From the assumption that the joint spectrum is coercive,
it follows that, for N large enough (i.e. and hence N − 1

large), the matrix ZN−1

[t0,t+j
′−1)

is of full row rank for all pos-

sible choices of j; therefore (A.5) is equivalent to the “dual”
equation for the coefficients:

h
01 Ξj Ψj1 . . . Ψjj

i
=
h

Ξj
′ Ψj

′
1 . . . Ψj

′
j
′
i

As mentioned above this should hold for each pair (j, j
′
),

ν > j ≥ 0; this is equivalent to the following constraints on
the estimated coefficients:

h
Ξ̂

Popt

1 Ψ̂
Popt

11

i
=
h

01 Ξ̂
Popt

0

i
h

Ξ̂
Popt

2 Ψ̂
Popt

22 Ψ̂
Popt

21

i
=
h

02 Ξ̂
Popt

0

i

...
...h

Ξ̂
Popt
ν Ψ̂

Popt
νν . . . Ψ̂

Popt

ν1

i
=
h

0ν Ξ̂
Popt

0

i
(A.6)
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For convenience, let us define Ξ0 =
h

Φt−t0 . . . Φ2 Φ1

i
.

Using the constraints above, some extra algebra will show
that (A.2) can be written in the form

YI =

2
6664

Φt−t0 . . . Φ1 0 . . .

...
. . .

. . .
. . .

...

. . . 0 Φt−t0 . . . Φ1

3
7775 vec

“
ZN+ν

t0

”
+EI . (A.7)

A more compact expression of (A.7) is:

Y N+ν
t =

h
Φt−t0 . . . Φ2 Φ1

i
ZN+ν

[t0,t) + EN+ν
t (A.8)

The “optimal” (Markov) solution to (A.7) is obtained by
pre-whitening the residual vector EI , which can be obtained
pre-multiplying by (I⊗Λ−1/2) both sides of (A.7) or, equiv-

alently, pre-multiplying both sides of (A.8) by Λ−1/2. It is a
simple calculation to check that, indeed, solving in the least
squares sense

Λ−1/2Y N+ν
t ' Λ−1/2

h
Φt−t0 . . . Φ2 Φ1

i
ZN+ν

[t0,t)

is equivalent to solving (4.10); this implies that Ξ̂
Popt

0 =h
Φ̂t−t0 . . . Φ̂2 Φ̂1

i
; conditions (4.11) and (4.12) can then

be obtained using the constraints in (A.6), which completes
the proof. 2
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